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Abstract—Cervical cancer presents an important worldwide
health challenge, especially in developing nations, where re-
stricted access to screening and postponed diagnosis remain
substantial obstacles. Traditional diagnostic methods including
Pap smears and Visual Inspection with Acetic Acid suffer from
subjective interpretation and significant inter-observer variabil-
ity, leading to an urgent requirement for automated diagnostic
tools. This paper presents CerviTrans-XAI, an ensemble frame-
work that combines multiple Vision Transformer architectures to
achieve accurate cervical cancer cell classification with integrated
explainable artificial intelligence capabilities. The proposed ap-
proach employs four distinct ViT models: ViT-B/16, ViT-DINO,
DeiT-B/16, and Swin Transformer. These models train from the
SipakMed dataset, which has five types of cervical cells. Through
a soft voting ensemble methodology, which averages probability
distributions from individual models, the framework achieves
superior generalization compared to single model implementa-
tions. To overcome the black-box challenge of deep learning
models in clinical settings, we incorporate LIME, which offer
visual insights by identifying key cellular regions that influence
diagnostic outcomes. Experimental validation demonstrates that
the classification accuracy of CerviTrans-XAI is 98.27%. on the
SipakMed dataset, establishing a new standard for automated
cervical cancer screening systems. The integration of accurate
diagnostics with clear, explainable decision-making makes this
framework a valuable asset for assisting healthcare providers in
under-resourced areas where expert pathologists are limited.

Index Terms—Vision Transformer, Cervical Cancer Classi-
fication, Ensemble Learning, Explainable AI, Medical Image
Analysis, Deep Learning

I. INTRODUCTION

Cervical cancer is a major health issue all over the world.
Each year, this disease kills many women because it is not
diagnosed early enough. Right now, it is the fourth most
common type of cancer and cause of cancer deaths in women
[1]. The World Health Organization (WHO) reports that

around 80% of deaths from cervical cancer occur in developing
countries [2]. When cancer cells become harmful, they could
spread to other sections of the body, making the situation much
more serious. It happens when cancer cells that aren’t normal
grow in the cervix, the lower portion of a woman’s uterus.
Finding the cancer early can help stop the cancer cells from
becoming dangerous.

For a long time, doctors have utilized Pap smear tests
and Visual Inspection with Acetic Acid (VIA) to identify
cervical cancer. These methods have been important tools for
preventing cervical cancer. However, these approaches have
some problems. They depend on doctors examining results by
hand, and different doctors might interpret the same results
differently. Because of these issues, there is an urgent need
for better diagnostic methods that can provide more accurate
and reliable results.

In recent times, deep learning and AI have started to play
an important role in how doctors read and understand medical
images. These advanced systems, especially those using neural
networks, are capable of picking up patterns that might not be
immediately obvious to the human eye. They’ve been used
successfully in many types of medical diagnoses and are
known for giving quick and reliable results. To help doctors
feel more confident in these tools, explanation methods like
LIME [3] have been introduced. These explanations show how
the AI came to a decision, which helps make the technology
more transparent and easier to trust.

This paper’s major contributions are:
• Developing a ViT-based ensemble model, achieving

98.27% accuracy on the SipakMed cervical cancer
dataset.

• Applying LIME to provide visual interpretability by
highlighting influential image regions, thereby increasing
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transparency and clinical trust.

II. RELATED WORKS

Deep learning has become increasingly significant in medi-
cal image analysis, particularly for cervical cell classification.
Early diagnosis is a key factor in improving patient outcomes,
and researchers have explored numerous architectures to tackle
this challenge. Tripathi et al. [4] applied a ResNet152 model to
the SIPaKMeD dataset and achieved 94.89% accuracy, demon-
strating the value of deep residual networks for cervical cy-
tology image classification. Hemalatha et al. [5] extended this
approach using ResNetV2, which achieved a slightly higher
accuracy of 95.33%. Mathivanan et al. [6] introduced a hybrid
technique that combined ResNet152 with logistic regression,
reaching an impressive 98.08% accuracy. Gangrade et al. [7]
introduced an ensemble of convolutional neural networks to
enhance generalization, obtaining 94.00% accuracy on the
same benchmark. In addition, Sharma et al. [8] proposed
CerviTransX, an explainable transformer-based approach for
Pap smear image classification. These studies collectively
demonstrate the ongoing shift from traditional deep CNNs
toward transformer-based models and hybrid systems, aiming
to increase accuracy, interpretability, and computational per-
formance in cervical cancer classification tasks. Such methods
are particularly attractive because they go beyond high-level
accuracy metrics and provide human-understandable visual
explanations that can improve trust among pathologists.

Building on these advances, our proposed CerviTrans-XAI
leverages a heterogeneous ensemble of Vision Transformers to
integrate complementary feature representations from multiple
architectures. This combination enables a richer and more
robust feature space than any single model, leading to a new
state-of-the-art (SOTA) accuracy of 98.27% on the SIPaKMeD
dataset and surpassing traditional CNNs, hybrid architectures,
and existing transformer models.

III. METHODOLOGY

The proposed framework, CerviTrans-XAI, for cervical cell
classification integrates a robust ensemble of fine-tuned Vision
Transformer models to achieve high accuracy and generaliz-
ability. The overall pipeline, illustrated in Fig. 1, begins with
dataset preparation and preprocessing, followed by the parallel
fine-tuning of four distinct transformer-based architectures.
The outputs of each model are then put together using a
probability averaging ensemble strategy. Finally, we apply
Local Interpretable Model-agnostic Explanations (LIME) to
explain how the ensemble makes decisions. The subsequent
sections detail each component of this methodology.

A. Dataset and Preprocessing
We perform our experiments on the publicly available

SIPaKMeD dataset [9], a standard benchmark for cervical
cytology classification. The dataset comprises 4049 high-
resolution images of individually cropped cells, acquired from
Pap smear slides. These are classified into five separate mor-
phological classes: Dyskeratotic, Koilocytotic, Metaplastic,
Parabasal, and Superficial-Intermediate.

The dataset was split into training (70%, 2834 images),
validation (10%, 405 images), and test (20%, 810 images) sets.
To ensure that the class distribution was maintained across the
splits, we employed a stratified sampling strategy based on the
cell type.

Each image was scaled to a consistent input resolution
of 224 × 224 pixels to comply with the input specifications
of the pre-trained models. We applied a wide range of data
augmentation methods on the training set to increase model
robustness and ignore overfitting. Images in the test and valida-
tion sets were only resized, without any further augmentation.
Finally, the standard deviation and ImageNet mean values were
used to normalize all the images. To identify the basic class
imbalance within the training data, we calculated class weights
inversely proportional to their frequency. After then, these
weights were put together into the loss function to penalize
misclassifications of minority classes more severely.

B. Ensemble Model Architecture

The cornerstone of our method is a powerful ensemble
model designed to capitalize on the diverse representational
capabilities of different Vision Transformer backbones. By
aggregating predictions from multiple, distinct architectures,
the ensemble benefits from a broader ”understanding” of
the input data, which enhances classification accuracy and
robustness against the idiosyncrasies of any single model.

1) Constituent Architectures: We selected four SOTA mod-
els, each pre-trained on the ImageNet-1k dataset, to serve as
the foundation of our ensemble. The last layer of each model’s
classification was substituted by a new fully connected layer
that was made just for the five classes in the SIPaKMeD
dataset.

Vision Transformer (ViT-B/16) functions as our baseline
architecture. It functions by dividing a picture into a series of
fixed-size patches, which are subsequently arranged linearly
and processed by a conventional Transformer encoder [10].
This process lets the model identify global connections be-
tween different sections of the image from the very first layer.

Swin Transformer (Swin-T) introduces a hierarchical
structure that is more analogous to typical Convolutional Neu-
ral Networks (CNNs). It calculates self-attention within non-
overlapping, localized windows. These are then progressively
merged in deeper layers, and a shifted windowing scheme
allows for cross-window connections, enabling efficient and
scalable modeling of both local and global features [11].

Data-efficient Image Transformer (DeiT-B/16) addresses
the challenge of training Vision Transformers on smaller
datasets. It employs a knowledge distillation strategy where
a ”distillation token” learns directly from the outputs of
a pre-trained, strong teacher model. This enables DeiT to
attain competitive performance without requiring massive pre-
training datasets [12], making it well-suited for fine-tuning on
specialized medical data.

DINO ViT (Dino-B/16) is a model pre-trained using a self-
supervised learning paradigm called DINO [13]. Instead of
using class labels, it learns rich visual features by ensuring
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Fig. 1: The Proposed CerviTrans-XAI Framework

that various augmented ”views” of the identical image produce
consistent outputs. This technique motivates the model to
gain powerful, semantically meaningful illustrations of object
parts and textures, which are highly beneficial for downstream
classification tasks.

The combination of these four models provides a com-
prehensive set of feature extractors, spanning global context
(ViT), hierarchical structure (Swin), data-efficient training
(DeiT) and semantically rich self-supervised features (DINO).

2) Model Fine-Tuning and Ensemble Integration: Each of
the four constituent models was independently fine-tuned on
our dedicated training set. We initialized the models with
their respective pre-trained weights to leverage learned features
for faster and more effective adaptation to the cervical cell
domain. Model weights were updated using the AdamW
optimizer. To handle class imbalance, a weighted cross-entropy
loss function was utilized during training, giving more penal-
ties to errors on minority classes.

The training process was regularized using a dynamic
learning rate scheduler that adjusted the rate based on vali-
dation accuracy, and an early stopping criterion was used for
avoiding overfitting by terminating training when validation
performance ceased to improve. The model checkpoint with
the maximum validation accuracy was preserved for each
architecture. To accelerate the process, all training was per-
formed with automatic mixed-precision (AMP).

The final classification is determined via a soft-voting
ensemble strategy. For a given input image x, each model
Mi in the ensemble calculates a probability vector pi =
softmax(Mi(x)). The final ensemble probability vector, Pens,
is the unweighted arithmetic mean of these individual vectors:

Pens(x) =
1

N

N∑
i=1

pi (1)

where N = 4. The class corresponding to the maximum value
in Pens is picked as the ultimate prediction. This averaging ap-
proach smooths out individual model predictions and reduces
variance, typically leading to a more reliable result.

C. Explainable AI for Model Interpretation

To ensure transparency and build trust in our model’s
decisions, We use LIME [3]. LIME approximates the char-
acteristics of our complex ensemble model (f ) around an
individual prediction by training a simpler, interpretable linear
model (g) on perturbations of the original image created from
superpixels.

Formally, the explanation ξ(x) is derived by tuning the
following objective:

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (2)

where Ω(g) is a complexity penalty that promotes sparsity
and L is a fidelity-loss function that quantifies how closely
g estimates f in the position πx. The resulting weights of
the learned model g correspond to the importance of each
superpixel. We visualize these weights to highlight the image
regions most influential to the prediction, allowing for a
direct, qualitative assessment of whether the model focuses
on cytologically relevant features.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this part, we represent a full evaluation of our suggested
CerviTrans-XAI model. First, we go over the experimental
environment, analyze the training dynamics, present the quan-
titative and qualitative performance, and finally discuss the
broader implications, limitations, and future directions of our
work.

A. Experimental Setup

All of the experiments took place in the Kaggle environment
equipped with a NVIDIA Tesla P100 GPU, a Intel Xeon CPU,
and 29 GB of RAM. The PyTorch and timm libraries were
used to build the framework in Python. The fine-tuning process
for all base models employed the AdamW optimizer with
a weight decay of 1 × 10−3 and an initial learning rate of
1 × 10−4. A batch size of 32 was used. To ensure optimal
convergence, a ‘ReduceLROnPlateau‘ learning rate scheduler
made the learning rate lower if validation accuracy stagnated
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for 3 epochs. A mechanism for early stopping with a patience
of 5 epochs were used to select the best-performance model
checkpoint.

B. Training Analysis

To verify the stability and generalization of our fine-tuning
process, we analyzed the validation and training curves for
each constituent model, as shown in Fig. 2. All four models
exhibit successful and stable convergence, with training and
validation losses consistently decreasing while accuracies in-
crease. Essentially, the validation loss for each model closely
follows the training loss without significant divergence, and
the difference between training and validation accuracy stays
small. This indicates that our comprehensive data augmenta-
tion scheme and regularization techniques effectively mitigated
overfitting. Furthermore, the termination of training at different
epochs for each model demonstrates that the early stopping
mechanism was instrumental in capturing the optimal check-
point for each architecture, preventing performance degrada-
tion from excessive training. These robust training dynamics
provide a solid foundation for the strong performance of our
final ensemble.

Fig. 2: Train and valid loss and accuracy curves for the four
constituent models: (a) ViT-B, (b) DINO-B, (c) DeiT-B, and
(d) Swin-T.

C. Quantitative Results
We evaluated our approach using standard classification

metrics, presented in Table I. Each constituent transformer
model achieves strong performance, with accuracies exceed-
ing 96.9%. Our proposed ensemble, CerviTrans-XAI, con-
sistently outperforms every individual model, achieving an
overall F1-Score and accuracy of 98.28%. This improvement
highlights the benefit of aggregating diverse feature represen-
tations.

TABLE I: Quantitative Performance on the SIPaKMeD

Model Acc. (%) Prec. (%) Recall (%) F1 (%)
ViT-B 97.53 97.53 97.54 97.53
DINO-B 96.91 96.95 96.93 96.92
DeiT-B 97.65 97.67 97.68 97.64
Swin-T 97.65 97.66 97.66 97.66
CerviTrans-XAI 98.27 98.28 98.28 98.28

The confusion matrix in Fig. 3 shows the class-wise per-
formance of CerviTrans-XAI, which is quite accurate across
all classes. The ROC curve in Fig. 4 further demonstrates the
model’s exceptional discriminative capability, with a macro-
average Area Under the Curve (AUC) of 0.9995.

Fig. 3: Confusion matrix for the proposed CerviTrans-XAI
ensemble model.

D. Comparison with State-of-the-Art
To contextualize our contribution, we compare CerviTrans-

XAI with recent methods on the SIPaKMeD dataset in Ta-
ble II. Our model achieves an accuracy of 98.28%, establishing
a new SOTA on this benchmark and surpassing previous
works, including those based on deep CNN ensembles and
hybrid ResNet architectures.

E. Qualitative Analysis with LIME
While quantitative metrics are high, the ”black box” char-

acter of deep models makes clinical trust harder. To address
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Fig. 4: Receiver Operating Characteristic (ROC) curves for the
proposed CerviTrans-XAI ensemble model

TABLE II: Comparison with previous studies on SIPaKMeD
Dataset

Reference Year Method Acc. (%)
Tripathi et al. [4] 2021 ResNet152 94.89
Hemalatha et al. [5] 2022 ResNetV2 95.33
Mathivanan et al. [6] 2024 ResNet152 + Logistic 98.08
Gangrade et al. [7] 2025 Ensemble CNN 94.00
Our Proposed 2025 CerviTrans-XAI 98.28

this, we use LIME [3] to understand why our model makes
a prediction. Fig. 5 presents LIME visualizations for four
correctly classified examples. In the Koilocytotic example
(Fig. 5a), LIME correctly highlights the enlarged, irregular
nucleus and characteristic perinuclear halo. Similarly, for the
Dyskeratotic cell (Fig. 5b), the explanation focuses on the
dense, hyperchromatic nucleus. The model’s reasoning aligns
with clinical knowledge for the Parabasal cell (Fig. 5c), where
the high nucleus-to-cytoplasm ratio is identified, and for the
mature Superficial-Intermediate cell (Fig. 5d), where LIME
emphasizes its small, pyknotic nucleus. These visualizations
provide strong evidence that our model’s decisions align with
established cytopathological criteria.

F. Discussion

Our results demonstrate that a heterogeneous ensemble of
Vision Transformers, CerviTrans-XAI, sets a new SOTA for
the classification of cervical cell on the SIPaKMeD bench-
mark. The success of our approach stems from combining the
varied inductive biases of different transformer architectures;
the global context captured by ViT, the hierarchical feature
learning of Swin-T, and the powerful semantic representations
from DeiT and DINO create an additional comprehensive and
massive feature space than any single model could achieve
alone. Furthermore, our LIME analysis shows that this high
performance is not based on dataset artifacts but on the model

Fig. 5: LIME explanations for four sample predictions. Green
regions support the model’s prediction, confirming its focus on
clinically relevant features for (a) Koilocytotic, (b) Dyskera-
totic, (c) Parabasal, and (d) Superficial-Intermediate cells.

learning clinically meaningful features, a critical step towards
building trustworthy AI for medical diagnosis.

Despite these promising results, we acknowledge several
limitations. First, this study is limited by its evaluation on a
single dataset, SipakMed. While the framework gets results
that are the best in the field on this benchmark, its general-
izability to other datasets with variations in image acquisition
and preparation protocols has not been established. Second,
our evaluation is performed on a dataset of pre-cropped,
isolated cells. Real-world clinical scenarios involve analyzing
whole-slide images (WSIs), which present significant chal-
lenges such as cell overlaps, staining variations, and artifacts.
The performance of CerviTrans-XAI in such a setting remains
to be validated. Third, the ensemble nature of our model, while
accurate, is computationally intensive, which could be a barrier
for deployment in resource-constrained environments.

Based on these limitations, our future work will proceed
in several directions. First, to determine the generalizability
of our model, we set up to monitor its performance on
additional, diverse cervical cytology datasets. Second, we will
focus on adapting and evaluating our framework on WSIs,
which will require integrating robust cell segmentation and
artifact handling pre-processing steps. Finally, we will explore
model compression and knowledge distillation techniques to
transfer the knowledge from our large ensemble into a single,
compact, and efficient model [14]. This ”distilled” CerviTrans-
XAI could retain the high accuracy of the ensemble while
being suitable for real-time clinical deployment. Other works
have also explored WSIs and model compression for medical
imaging, but are acknowledged here without individual citation
to maintain conciseness.

V. CONCLUSION

This research presents CerviTrans-XAI, a novel ensemble
framework that successfully combines Vision Transformers
for automated cervical cancer classification with integrated
explainable AI capabilities. Our experimental evaluation on
the SipakMed dataset demonstrates exceptional performance,
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achieving 98.27% classification accuracy that establishes a
new standard for cervical cancer detection systems. The
ensemble strategy effectively leverages the complementary
feature representations learned by different ViT architectures,
resulting in superior generalization compared to individual
model implementations. The integration of LIME-based ex-
plainable AI provides crucial transparency in the process
of decision-making, addressing the interpretability challenges
that often hinder clinical adoption of deep learning systems.
The visual explanations successfully highlight anatomically
relevant cellular structures, demonstrating that the model
learns meaningful pathological features rather than exploiting
dataset artifacts. This combination of high accuracy and in-
terpretable predictions represents a significant advancement in
automated cervical cancer screening technology. The frame-
work’s ability to provide both reliable classification and trans-
parent decision rationale positions it as a useful instrument for
supporting healthcare personnel in the diagnosis of cervical
cancer, especially in places where resources are limited and
professional pathologists may not be available. CerviTrans-
XAI demonstrates the potential of Vision Transformer ensem-
bles to deliver clinically viable AI-assisted diagnostic systems
that can enhance patient outcomes through improved screening
accuracy and diagnostic confidence.
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